Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.
Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.
Назначение и сфера использования
Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.
За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.
Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.
Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при выборе диодной лампочки необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.
Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.
Техника может быть самых различных видов:
- фары автомобилей, велосипедов, мотоциклов и т. д.;
- небольшие переносные или уличные фонари;
- светодиодные линейки, ленты, потолочные лампочки и модули.
Однако для маломощных светодиодов, а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.
Принцип работы блока питания
Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.
Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.
Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).
Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).
Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.
Отличительные характеристики преобразователя
Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.
Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.
К главным факторам, влияющим на работу, относятся:
- составляющие элементы, используемые в процессе сборки;
- степень защиты (IP);
- минимальные и максимальные значения на входе и выходе;
- производитель.
Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).
Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.
Правила подбора преобразователя тока
Для приобретения преобразователя LED лампы следует изучить ключевые характеристики прибора. Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.
Мощность световых диодов
Разберем изначально выходное напряжение, которое подчинено нескольким фактором:
- значение потерь напряжения на P-N переходах кристаллов;
- количество световых диодов в цепочке;
- схема подключения.
Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.
Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя — обеспечить этим элементам подачу нужного количества энергии.
Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.
Для просчета потребляемой энергии используют такую формулу:
PH = PLED * N,
Где
- PLED – электрическая нагрузка, создаваемая одним диодом,
- N – количество кристаллов в цепи.
Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.
Максимальная мощность прибора
Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение PH.
Таким образом формула приобретает вид:
Pmax ≥ (1,2..1,3) * PH,
где Pmax — номинальная мощность блока питания.
Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.
Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.
Их характеристики выглядят следующим образом:
- падение напряжения 1,9-2,4 В;
- ток 350 мА;
- средняя мощность потребления 750 мВт.
Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.
Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.
Схема подключения светодиодов
Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.
Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.
Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.
В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.
Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.
Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.
Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.
Многие виды светодиодок для домашнего освещения рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.
Виды драйверов по типу устройства
Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.
Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т .к. не вся представленная продукция имеет приемлемое качество.
Электронный вид прибора
В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.
Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.
Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио — можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.
В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.
За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.
Блок питания на основе конденсаторов
Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.
Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов — сглаживающий.
Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.
Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.
Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.
Диммируемые преобразователи тока
Драйверы-светорегуляторы для диммируемых LED-лампочек позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.
Существует два метода подключения:
- первый предполагает плавный пуск;
- второй – импульсный.
Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.
При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.
Этот же вывод обеспечивает и аналоговое регулирование — резистор на 2,2 кОм меняют на более мощный переменный аналог — 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.
Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.
С корпусом или без него?
Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.
Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.
Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.
Классическая схема драйвера
Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.
Схема такого механизма составлена из трех основных каскадных областей:
- Разделитель напряжения на емкостном сопротивлении.
- Выпрямитель.
- Стабилизаторы напряжения.
Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.
Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.
Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.
Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.
Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.
Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.
Выводы и полезное видео по теме
Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:
Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:
Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:
Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.
Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.
Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.